Skip to main content

On, Above, and Beyond: Taking Tabletops to the Third Dimension

  • Chapter
  • First Online:
Tabletops - Horizontal Interactive Displays

Part of the book series: Human-Computer Interaction Series ((HCIS))

Abstract

Extending the tabletop to the third dimension has the potential to improve the quality of applications involving 3D data and tasks. Recognizing this, a number of researchers have proposed a myriad of display and input metaphors. However a standardized and cohesive approach has yet to evolve. Furthermore, the majority of these applications and the related research results are scattered across various research areas and communities, and lack a common framework. In this chapter, we survey previous 3D tabletops systems, and classify this work within a newly defined taxonomy. We then discuss the design guidelines which should be applied to the various areas of the taxonomy. Our contribution is the synthesis of numerous research results into a cohesive framework, and the discussion of interaction issues and design guidelines which apply. Furthermore, our work provides a clear understanding of what approaches have been taken, and exposes new routes for potential research, within the realm of interactive 3D tabletops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehta N (1982) A flexible machine interface. M.A.Sc. Thesis, Electrical Engineering, University of Toronto

    Google Scholar 

  2. Dietz P, Leigh D (2001) DiamondTouch: A multi-user touch technology. In: Proceedings of the 14th annual ACM symposium on user interface software and technology, ACM Press, New York, pp 219–226, doi: 10.1145/502348.502389

    Google Scholar 

  3. Han JY (2005) Low-cost multi-touch sensing through frustrated total internal reflection. In: Proceedings of the 18th annual ACM symposium on user interface software and technology, ACM Press, New York, pp 115–118, doi: 10.1145/1095034.1095054

    Google Scholar 

  4. Rekimoto J (2002) SmartSkin: An infrastructure for freehand manipulation on interactive surfaces. In: Proceedings of the SIGCHI conference on human factors in computing systems: Changing our world, changing ourselves, ACM Press, New York, pp 113–120, doi: 10.1145/503376.503397

    Google Scholar 

  5. SMART Technologies Inc. Digital Vision Touch Technology. http://www.smarttech.com/dvit/, accessed 05.02.2009

  6. Wilson AD (2004) TouchLight: An imaging touch screen and display for gesture-based interaction. In: Proceedings of the 6th international conference on multimodal interfaces, ACM Press, New York, pp 69–76, doi: 10.1145/1027933.1027946

    Google Scholar 

  7. Wilson AD (2005) PlayAnywhere: A compact interactive tabletop projection-vision system. In: Proceedings of the 18th annual ACM symposium on user interface software and technology, ACM Press, New York, pp 83–92, doi: 10.1145/1095034.1095047

    Google Scholar 

  8. Wu M, Balakrishnan R (2003) Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays. In: Proceedings of the 16th annual ACM symposium on user interface software and technology, ACM Press, New York, pp 193–202, doi: 10.1145/964696.964718

    Google Scholar 

  9. Buxton W (1997) Living in augmented reality: Ubiquitous media and reactive environments. In: Video mediated communication. pp 363–384

    Google Scholar 

  10. Hancock M, Carpendale S, Cockburn A (2007) Shallow-depth 3d interaction: Design and evaluation of one-, two- and three-touch techniques. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM Press, New York, pp 1147–1156, doi: 10.1145/1240624.1240798

    Google Scholar 

  11. Reisman J, Davidson P, Han J (2009) A screen-space formulation for 2D and 3D direct manipulation. In: Proceedings of the 22nd annual ACM symposium on user interface software and technology, ACM Press, New York, pp 69–78, doi: 10.1145/1622176.1622190

    Google Scholar 

  12. Wilson AD, Izadi S, Hilliges O, Garcia-Mendoza A, Kirk D (2008) Bringing physics to the surface. In: Proceedings of the 21st annual ACM symposium on user interface software and technology, ACM Press, New York, pp 67–76, doi: 10.1145/1449715.1449728

    Google Scholar 

  13. Hilliges O, Izadi S, Wilson AD, Hodges S, Garcia-Mendoza A, Butz A (2009) Interactions in the air: Adding further depth to interactive tabletops. In: Proceedings of the 22nd annual ACM symposium on user interface software and technology, ACM Press, New York, pp 139–148, doi: 10.1145/1622176.1622203

    Google Scholar 

  14. Czernuszenko M, Pape D, Sandin D, DeFanti T, Dawe GL, Brown MD (1997) The ImmersaDesk and infinity wall projection-based virtual reality displays. SIGGRAPH Computer Graphics 31(2):46–49, doi: 10.1145/271283.271303

    Article  Google Scholar 

  15. Agrawala M, Beers AC, McDowall I, Fröhlich B, Bolas M, Hanrahan P (1997) The two-user responsive workbench: Support for collaboration through individual views of a shared space. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques international conference on computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, pp 327–332, doi: 10.1145/258734.258875

    Google Scholar 

  16. Krüger W, Bohn C, Fröhlich B, Schüth H, Strauss W, Wesche G (1995) The responsive workbench: A virtual work environment. Computer 28(7):42–48, doi: 10.1109/2.391040

    Google Scholar 

  17. Poston T, Serra L (1994) The virtual workbench: Dextrous VR. In: Virtual reality software and technology, pp 111–121

    Google Scholar 

  18. Buxton W, Fitzmaurice G (1998) HMDs, caves, & chameleon: A human centric analysis of interaction in virtual space. Computer Graphics, The SIGGRAPH Quarterly 32(4):64–68

    Article  Google Scholar 

  19. Geis WP (1996) Head-mounted video monitor for global visual access in mini-invasive surgery: An initial report. Surgical Endoscopy, 10(7):768–770

    Google Scholar 

  20. Feiner S, Macintyre B, Seligmann D (1993) Knowledge-based augmented reality. Communications of the ACM 36(7):53–62, doi: 10.1145/159544.159587

    Article  Google Scholar 

  21. Benko H, Ishak EW, Feiner S (2004) Collaborative mixed reality visualization of an archaeological excavation. In: Proceedings of the 3rd IEEE/ACM international symposium on mixed and augmented reality, symposium on mixed and augmented reality. IEEE Computer Society, Washington, DC, pp 132–140, doi: 10.1109/ISMAR.2004.23

    Google Scholar 

  22. Olwal A, Lindfors C, Gustafsson J, Kjellberg T, Mattsson L (2005) ASTOR: An autostereoscopic optical see-through augmented reality system. In: Proceedings of the 4th IEEE/ACM international symposium on mixed and augmented reality, IEEE Computer Society, Washington, DC, pp 24–27, doi: 10.1109/ISMAR.2005.15

    Google Scholar 

  23. Raskar R, Welch G, Chen W (1999) Table-top spatially-augmented reality: Bringing physical models to life with projected imagery. In: Proceedings of the 2nd IEEE and ACM international workshop on augmented reality, IEEE Computer Society, Washington, DC, p 64

    Google Scholar 

  24. Piper B, Ratti C, Ishii H (2002) Illuminating clay: A 3-D tangible interface for landscape analysis. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM Press, New York, pp 355–362, doi: 10.1145/503376.503439

    Google Scholar 

  25. Wang Y, Biderman A, Piper B, Ratti C, Ishii H (2002) Sandscape. Get in touch, Ars Electronica Center, Linz, Austria 2002

    Google Scholar 

  26. Underkoffler J, Ishii H (1999) Urp: A luminous-tangible workbench for urban planning and design. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM Press, New York, pp 386–393, doi: 10.1145/302979.303114

    Google Scholar 

  27. Kakehi Y, Iida M, Naemura T, Mitsunori M (2006) Tablescape plus: Upstanding tiny displays on tabletop display. In: ACM SIGGRAPH 2006 emerging, ACM Press, New York, p 31, doi: 10.1145/1179133.1179165

    Chapter  Google Scholar 

  28. Raskar R, Welch G, Low KL, Bandyopadhyay D (2001) Shader Lamps: Animating real objects with image based illumination. In: Eurographics workshop on rendering (EGWR 2001), London

    Google Scholar 

  29. Bandyopadhyay D, Raskar R, Fuchs H (2001) Dynamic Shader Lamps: Painting on movable objects. In: IEEE and ACM international symposium on augmented reality, pp 207–216

    Google Scholar 

  30. Favalora GE (2005) Volumetric 3D displays and application infrastructure. Computer 38(8):37–44, doi: 10.1109/MC.2005.276

    Article  Google Scholar 

  31. Grossman T, Balakrishnan R (2006) An evaluation of depth perception on volumetric displays. In: Proceedings of the working conference on advanced visual interfaces, ACM Press, New York, pp 193–200, doi: 10.1145/1133265.1133305

    Google Scholar 

  32. Rosen P, Pizlo Z, Hoffmann C, Popescu V (2004) Perception of 3D spatial relations for 3D displays. Stereoscopic Displays XI:9–16

    Google Scholar 

  33. Balakrishnan R, Fitzmaurice GW, Kurtenbach G (2001) User interfaces for volumetric displays. Computer 34(3):37–45, doi: 10.1109/2.910892

    Article  Google Scholar 

  34. Grossman T, Wigdor D, Balakrishnan R (2004) Multi-finger gestural interaction with 3d volumetric displays. In: Proceedings of the 17th annual ACM symposium on user interface software and technology, ACM Press, New York, pp 61–70, doi: 10.1145/1029632.1029644

    Google Scholar 

  35. Grossman T, Balakrishnan R (2006) The design and evaluation of selection techniques for 3D volumetric displays. In: Proceedings of the 19th annual ACM symposium on user interface software and technology, ACM Press, New York, pp 3–12, doi: 10.1145/1166253.1166257

    Google Scholar 

  36. Benko H, Wilson AD, Balakrishnan R (2008) Sphere: Multi-touch interactions on a spherical display. In: Proceedings of the 21st annual ACM symposium on user interface software and technology, ACM Press, New York, pp 77–86, doi: 10.1145/1449715.1449729

    Google Scholar 

  37. Izadi S, Hodges S, Taylor S, Rosenfeld D, Villar N, Butler A, Westhues J (2008) Going beyond the display: A surface technology with an electronically switchable diffuser. In: Proceedings of the 21st annual ACM symposium on user interface software and technology, ACM Press, New York, pp 269–278

    Google Scholar 

  38. Ware C, Franck G (1996) Evaluating stereo and motion cues for visualizing information nets in three dimensions. ACM Transactions on Graphics 15(2):121–140, doi: 10.1145/234972.234975

    Article  Google Scholar 

  39. Dodgson NA (2005) Autostereoscopic 3D displays. Computer 38(8):31–36, doi: 10.1109/MC.2005.252

    Article  Google Scholar 

  40. Hinckley K (2002) Input technologies and techniques. In: The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications, pp 151–168

    Google Scholar 

  41. Reetz A, Gutwin C, Stach T, Nacenta M, Subramanian S (2006) Superflick: A natural and efficient technique for long-distance object placement on digital tables. In: Proceedings of graphics interface 2006, ACM international conference proceeding series, vol 137, Canadian Information Processing Society, Toronto, ON, pp 163–170

    Google Scholar 

  42. Forlines C, Wigdor D, Shen C, Balakrishnan R (2007) Direct-touch vs. mouse input for tabletop displays. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM Press, New York, pp 647–656, doi: 10.1145/1240624.1240726

    Google Scholar 

  43. Parker JK, Mandryk RL, Inkpen KM (2005) TractorBeam: Seamless integration of local and remote pointing for tabletop displays. In: Proceedings of graphics interface 2005, Canadian Human-Computer Communications Society, School of Computer Science, University of Waterloo, Waterloo, ON, pp 33–40

    Google Scholar 

  44. Mine MR (1995) Virtual environment interaction techniques. In: Technical report, UMI Order Number: TR95-018, University of North Carolina at Chapel Hill

    Google Scholar 

  45. Ryall K, Forlines C, Shen C, Morris MR (2004) Exploring the effects of group size and table size on interactions with tabletop shared-display groupware. In: Proceedings of the 2004 ACM conference on computer supported cooperative work, ACM Press, New York, pp 284–293, doi: 10.1145/1031607.1031654

    Google Scholar 

  46. Benko H, Feiner S (2007) Balloon selection: A multi-finger technique for accurate low-fatigue 3D selections. In: Proceedings of the IEEE symposium on 3D user interfaces, Charlotte, NC, pp 79–86

    Google Scholar 

  47. Matsuda M, Matsushita M, Yamada T, Namemura T (2006) Behavioral analysis of asymmetric information sharing on Lumisight table. In: Proceedings of the first IEEE international workshop on horizontal interactive human-computer systems, IEEE Computer Society, Washington, DC, pp 113–122, doi: 10.1109/TABLETOP.2006.6

    Google Scholar 

  48. Song H, Grossman T, Fitzmaurice G, Guimbretiere F, Khan A, Attar R, Kurtenbach G (2009) PenLight: Combining a mobile projector and a digital pen for dynamic visual overlay. In: Proceedings of the 27th international conference on human factors in computing systems, ACM Press, New York, pp 143–152, doi: 10.1145/1518701.1518726

    Google Scholar 

  49. Herndon KP, Zeleznik RC, Robbins DC, Conner DB, Snibbe SS, van Dam A (1992) Interactive shadows. In: Proceedings of the 5th annual ACM symposium on user interface software and technology, ACM Press, New York, pp 1–6, doi: 10.1145/142621.142622

    Google Scholar 

  50. McCauley M, Sharkey T (1992) Cybersickness: Perception of self-motion in virtual environments. Presence: Teleoperators and Virtual Environments 1(3):311–318

    Google Scholar 

  51. Baudel T, Beaudouin-Lafon M (1993) Charade: Remote control of objects using free-hand gestures. Communications of the ACM 36(7):28–35

    Article  Google Scholar 

  52. Hinckley K, Pausch R, Goble JC, Kassell NF (1994) A survey of design issues in spatial input. In: Proceedings of the 7th annual ACM symposium on user interface software and technology, ACM Press, New York, pp 213–222, doi: 10.1145/192426.192501

    Google Scholar 

  53. Conner BD, Snibbe SS, Herndon KP, Robbins DC, Zeleznik RC, van Dam A (1992) Three-dimensional widgets. In: Proceedings of the 1992 symposium on interactive 3D graphics, ACM Press, New York, pp 183–188, doi: 10.1145/147156.147199

    Google Scholar 

  54. Venolia D (1993) Facile 3D direct manipulation. In: Proceedings of the INTERACT ’93 and CHI ’93 conference on human factors in computing systems, ACM Press, New York, pp 31–36, doi: 10.1145/169059.169065

    Google Scholar 

  55. Balakrishnan R, Baudel T, Kurtenbach G, Fitzmaurice G (1997) The Rockin’ mouse: Integral 3D manipulation on a plane. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM Press, New York, pp 311–318, doi: 10.1145/258549.258778

    Google Scholar 

  56. Cechanowicz J, Irani P, Subramanian S (2007) Augmenting the mouse with pressure sensitive input. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM Press, New York, pp 1385–1394, doi: 10.1145/1240624.1240835

    Google Scholar 

  57. Balakrishnan R, Kurtenbach G (1999) Exploring bimanual camera control and object manipulation in 3D graphics interfaces. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM Press, New York, pp 56–62, doi: 10.1145/302979.302991

    Google Scholar 

  58. Liang J, Green M (1994) JDCAD: A highly interactive 3D modeling system. Computers and Graphics 18(4):5499–506

    Google Scholar 

  59. Scott SD, Carpendale MST, Inkpen KM (2004) Territoriality in collaborative tabletop workspaces. In: Proceedings of the 2004 ACM conference on computer supported cooperative work, ACM Press, New York, pp 294–303, doi: 10.1145/1031607.1031655

    Google Scholar 

  60. Kruger R, Carpendale MST, Scott SD, Greenberg S (2003) How people use orientation on tables: Comprehension, coordination and communication. In: Proceedings of the 2003 international ACM SIGGROUP conference on supporting group work, ACM Press, New York, pp 369–378, doi: 10.1145/958160.958219

    Google Scholar 

  61. Tang, JC (1991) Findings from observational studies of collaborative work. In: Greenberg S (ed) Computer-supported cooperative work and groupware, Academic Press Computers and People Series. Academic Press Ltd., London, pp 11–28

    Google Scholar 

  62. Shen C, Vernier FD, Forlines C, Ringel M (2004) DiamondSpin: An extensible toolkit for around-the-table interaction. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM Press, New York, pp 167–174, doi: 10.1145/985692.985714

    Google Scholar 

  63. Forlines C, Shen C, Wigdor D, Balakrishnan R (2006) Exploring the effects of group size and display configuration on visual search. In: Proceedings of the 2006, 20th anniversary conference on computer supported cooperative work, ACM Press, New York, pp 11–20, doi: 10.1145/1180875.1180878

    Google Scholar 

  64. Wigdor D, Balakrishnan R (2005) Empirical investigation into the effect of orientation on text readability in tabletop displays. In: Proceedings of the ninth conference on European conference on computer supported cooperative work, Springer-Verlag, New York, pp 205–224

    Google Scholar 

  65. Wigdor D, Shen C, Forlines C, Balakrishnan R (2007) Perception of elementary graphical elements in tabletop and multi-surface environments. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM Press, New York, pp 473–482, doi: 10.1145/1240624.1240701

    Google Scholar 

  66. Shen C, Ryall K, Forlines C, Esenther A, Vernier FD, Everitt K, Wu M, Wigdor D, Morris MR, Hancock M, Tse E (2006) Informing the design of direct-touch tabletops. IEEE Computer Graphics and Applications 26(5):36–46, doi: 10.1109/MCG.2006.109

    Article  Google Scholar 

  67. Grossman T, Wigdor D, Balakrishnan R (2007) Exploring and reducing the effects of orientation on text readability in volumetric displays. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM Press, New York, pp 483–492, doi: 10.1145/1240624.1240702

    Google Scholar 

Download references

Acknowledgments

We thank Andy Wilson, members of the Dynamic Graphics Project at University of Toronto, and members of the Mitsubishi Electronic Research Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tovi Grossman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Grossman, T., Wigdor, D. (2010). On, Above, and Beyond: Taking Tabletops to the Third Dimension. In: Müller-Tomfelde, C. (eds) Tabletops - Horizontal Interactive Displays. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-84996-113-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-113-4_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-112-7

  • Online ISBN: 978-1-84996-113-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics